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LIFT-DRAG RATIOS FOR ARiiOW WINGS ALONE AND I N  

COMBINATION WITH A BODY, NACEIJ3S, AND 

VERTICAL TAILS AT MACH NUMBER 3* 

By W i l l i a m  A. Hill, Jr. 

SUMMARY 

Longitudinal and direct ional  character is t ics  of cambered and twisted 
arrow wings alone and i n  combination with a slender body, ve r t i ca l  tai ls ,  
and various arrangements of engine nacelles were measured f o r  a Mach num- 
ber of 2.94 and a Reynolds number of 3.5X106 (based on wing mean aerody- 
namic chord). The wing thickness-to-chord r a t io s  were 2.1, 3.2, and 4.3 
percent. The longitudinal characterist ics of the  3.2-percent-thick wing 
were a l so  measured at  a Mach number of 0.2 and a Reynolds number of 6x10~. 

The highest maximum l i f t -drag  rat io  measured f o r  the wings alone a t  
This value w a s  obtained fo r  the  wings of a Mach number of 2.94 w a s  8.9. 

thickness r a t i o  2.1 and 3.2 percent. 
resulted i n  a reduction i n  maxtmum l i f t -drag r a t i o  from 8.9 t o  7.3. 
t i c a l  t a i l s  attached t o  the t i p s  of the 3.2-percent-thick wing provided 
the wing-body combination with directional s t a b i l i t y  but reduced the m a x i -  
mum l i f t -d rag  r a t i o  from 7.3 t o  7.1. 
obtained with nacelles added t o  the wing-body-tail combination w a s  6.8 f o r  
the  model a t  t r i m .  A t  a Mach number of 0.2, the 3.2-percent-thick wing had 
only moderate in s t ab i l i t y  at high l i f t  coefficients fo r  a moment reference 
corresponding t o  tha t  required fo r  trim a t  a Mach number of 2.94. 

Addition of the body t o  these wings 
Ver- 

The highest maximum l i f t -d rag  r a t i o  

INTRODUCTION 

Recent in te res t  i n  developing airplanes with high l i f t -drag  r a t io s  a t  
Mach numbers near 3 has led t o  studies of arrow wings and of airplane con- 
figurations eq loy ing  arrow wings (refs.  1 through 8) . 
l i f t -d rag  r a t i o  (about 9) a t  a Mach number of 3 and a Reynolds number of 
3.7XlO".  
i n  order t o  achieve a low drag due t o  l i f t  and t o  t r i m  at  optimum l i f t  

One arrow wing 
L investigated i n  reference 2 was found to  have a re la t ive ly  high maximum 

The wing, with leading edges swept 80°, was cambered and twisted 

*Title, Unclassified 
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coefficient.  Effects of changes i n  Reynolds number and supersonic Mach 
number on the l i f t -drag  r a t i o  of the  wing were reported i n  reference 7. 
The effects  of adding body volume t o  the  wing i n  the  form of bodies of 
both circular and e l l i p t i c a l  cross section were studied i n  reference 8. 

. 

The primary purpose of the  present investigation w a s  t o  determine, 
a t  Mach number 3, the  e f fec ts  on l i f t -drag  r a t i o  and s t a t i c  s t a b i l i t y  of 
adding ver t ica l  t a i l s  and nacelles t o  t h i s  wing i n  combination with a body 
of high fineness r a t io .  Another purpose w a s  t o  investigate the  e f fec ts  of 
changes i n  the wing thickness r a t io ,  camber, and t w i s t  f o r  wings alone and 
f o r  wing-body combinations. A t h i r d  purpose w a s  t o  investigate the  longi- 
tud ina l  s t a b i l i t y  character is t ics  of the  wing alone a t  Mach number 0.2. 

SYMBOLS 
A 
3 
8 
8 

span of wing-body combination with clipped wing t i p s  (see f i g .  1) 

D drag coefficient,  - 
%XIS 

L l i f t  coefficient,  - 
%os 

(g)max 
l i f t  coefficient a t  

pitching-moment coefficient about moment reference center shown 
pitching moment 

h S ?  i n  figure 1, 

yawing-moment coefficient about moment reference center shown in  
yawing moment 

q o o s  
f igure 1, 

a = O  

side-force coefficient,  s ide force 
%Is 



A 

8 

C 

xp 
X r  

a 

aopt 

P 

, per radian 

a = O  

root chord of exposed wing 

loca l  chord of exposed wing 

mean aerodynamic chord of  exposed wing 

drag (exclusive of base drag and in te rna l  drag) 

body base diameter 

l i f t  

body length (equal t o  2c)  

body nose length 

free-stream Mach number 

free-stream dynamic pressure 

coordinates of body nose (see f ig .  l ( b ) )  

exposed Wing plan-form area 

wing loca l  maximum thickness 

Cartesian coordinates, x axis coincident with body longitudinal 
axis and lower surface of wing a t  root section, and 
perpendicular t o  x axis i n  p i tch  plane 

z axis 

distance from leading edge of wing root chord t o  center of pressure 

distance from leading edge of wing root chord t o  moment reference 
center (see f ig .  l ( b ) )  

angle of attack 

angle of a t tack a t  

angle of s idesl ip  
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a( 1 

semiapex angle of wing leading edge 

incremental coefficient due t o  the addition of v e r t i c a l  ta i ls  or 
nacelles 

Sub sc r ip t  s 

L lower contour of wing section 

max m a x i m u m  

min minimum 
A 
3 
8 

U upper contour of wing section 8 

MODELS AND TESTS 

Models 

Three arrow wings of essent ia l ly  the same plan form ( f ig .  l ( a )  ) , but 
of different thickness-to-chord ra t io ,  camber, and t w i s t ,  were investi-  
gated a t  & = 2.94. The wings were designated as  W1, W2, and W3. Wing 
W2 w a s  model 6 of reference 2 and model W of reference 8, except t ha t  the  
t i p s  were clipped as shown. 
(L/D),, by approximately 0.1.) This wing, previous t o  being twisted, 
had a Clark-Y a i r f o i l  (12 percent thick) normal t o  the leading edge. The 
section ordinates of W1 and W3 were obtained by the multiplication of the 
section ordinates of W2 (untwisted) by 2/3 and 4/3, respectively. 
result ing thickness-to-chord r a t io s  of streamwise sections of wings W l ,  
W2, and W3 were 2.1, 3.2, and 4.3 percent, respectively. The ordinates 
of W2 were referenced t o  the  f l a t  pa r t  of the lower surface of the a i r f o i l  
ra ther  than t o  the mean l ine .  Thus, a change i n  section thickness was 
accompanied by a change i n  section camber. The wings were twisted by 
bending the wing t i p s  upward about the axis shown, thereby decreasing the 
angle of attack of the t i p  sections re la t ive  t o  those a t  the root. 
wings are defined i n  figure l ( a )  by tabulated ordinates describing the wing 
bend, together with ordinates of streamwise sections of the  untwisted wings. 
Ordinates for the bend are  presented i n  terms of the  displacement of the 
lower surface of the  wing t i p  from the lower surface reference of the 
unbent wing. 
the  t e s t  conditions fo r  optimum l i f t  coefficient (a, 4.5O). An 8-to-1 - 
scale model of wing W2 was tes ted  a t  
f igure l ( a )  of reference 7. 

(Clipping the t i p s  w a s  found t o  reduce 

The 

The 

These ordinates are  presented f o r  the no-load condition and 

&, = 0.2. T h i s  model i s  shown i n  
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The wings were constructed so that they could be t e s t ed  alone or i n  
combination with a body, B. 
at the root chord and mounted on the  body so t h a t  t h e i r  span was greater 
when tes ted  i n  combination with the body. They were positioned so that 
the  lower reference surface of the wings coincided with the midplane of 
the body. Body B was  c i rcular  i n  cross section and consisted of a 3/4- 
power nose ( 2 r ~ / d  = ( q / 2 ~ ) 3 / ~  ) of fineness r a t i o  6 attached t o  a cylin- 
d r i c a l  afterbody 12.7 diameters long. 
re la t ive  t o  the t o t a l  plan area i s  tabulated i n  figure l ( b )  i n  terms of 
the volume parameter, (v~lume~/3) / (p lan  area).  

It should be noted t h a t  the  wings were parted 

The t o t a l  volume of the  models 

The ta i ls ,  T, employed t o  provide d i rec t iona l  s t a b i l i t y  t o  body-wing 
combination BW2, were mounted on the  wing t i p s  (see f ig .  l(b)) . 
t a i l s  were f l a t  p la tes  of arrow plan form and were 2.9 percent thick along 
the  mean aerodynamic chord. 

These 

Four nacelle arrangements, designated as N1,  N2y N 3 y  and N 4  i n  f ig -  . 
ure l(b) , were investigated to simulate engine in s t a l l a t ions  fo r  model 
BW2T. 
the wing and close t o  the body t o  simulate engine packs. 
consisted of s i x  smaller nacelles attached beneath the  wing t o  simulate 
single-engine pods. A l l  of the  nacelles were straight-through ducts of 
c i rcu lar  cross section. Each nacelle arrangement had essent ia l ly  the  same 
t o t a l  plan area, wetted area, and inlet  area. The r a t i o  of t o t a l  i n l e t  
area t o  wing plan area was  0.010. A photograph of model BW2TN2 i s  pre- 
sented i n  figure l ( c )  . A l l  of the models were constructed of s t e e l  and 
were supported from the rear by stings attached t o  a strain-gage balance. 

For arrangements N1, N2, and N3, two nacelles were attached beneath 
Arrangement N 4  

Tests 

The t e s t s  at  Mach number 2.94 were conducted i n  the Ames 1- by 3-Foot 
Supersonic Wind Tunnel No. 1. The Reynolds number, based on the wing mean 
aerodynamic chord, was  3.5 million. L i f t ,  drag, and pitching moment were 
measured f o r  a l l  the  models a t  zero sideslip and angles of attack from -7O 
t o  6.4O.  Side-force and yawing-moment measurements were obtained for com- 
p l e t e  configurations BW2TN1, BW2TN2, BW2TN3, and BW2TN4, and configura- 
t ions  BW2T and BW2 at  zero angle of attack and angles of s idesl ip  from 
0' t o  6O. S ta t ic  pressures a t  the  base of the  support s t ing  of the wings 
alone and at  the  base of the  body were measured. No measurements were 
made of nacelle base pressure; however, base pressure estimates were 
obtained from reference 9. 
limation technique (see ref.  10) t o  determine the posit ion of boundary- 
layer  t rans i t ion  on the models. 

Visual-flow studies were made using the sub- 

The t e s t  at  Mach number 0.2 was made i n  the  Ames 12-foot pressure 
tunnel. The Reynolds number, based on the wing mean aerodynamic chord, 
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was 6 million. 
large-scale model of wing W2 at zero s idesl ip  and angles of a t tack from 
Oo t o  about 30'. 
recorded. 

LiM;, drag, and pitching moment were measured f o r  the 
. 

Sta t ic  pressures a t  the  base of the support s t ing were 

MDUCTION AND ACCURACY OF DATA 

The force and moment data have been reduced t o  coefficient form based 
on the plan area and the mean aerodynamic chord of the wings. 
moment coefficients a re  referred t o  the  moment reference centers tabulated 
i n  figure l ( b ) .  
trimmed a t  i t s  optimum l i f t  coefficient.  
alone at  
t es ted  without a wing attached) has been subtracted from the t o t a l  measured 
drag. 
rected for ef fec ts  of tunnel w a l l  interference; however, no adjustments 
i n  these data were made f o r  the s t ing drag or the  influence of the s t ing 
pressure f i e l d  but these e f fec ts  are  believed t o  be small. The drag 
coefficients fo r  the wings i n  combination with the body and nacelles 
(& = 2.94) have been adjusted t o  a condition of free-stream s t a t i c  pres- 
sure a t  the bases of the body and nacelles. For the  models with nacelles, 
t he  internal drag of the nacelles has been subtracted from the t o t a l  drag. 
The internal drag was assumed t o  r e su l t  only from skin f r i c t i o n  and was 
calculated f o r  turbulent boundary-layer flow by the method of Rubesin 
and Johnson, as presented i n  reference 11. 

Pitching- 

These locations were selected so tha t  each model w a s  
To obtain the drag of the wings 

& = 2.94, the measured drag of the support s t ing  (which was 

For the wing tes ted a t  & = 0.2 (wing W2), the  drag has been cor- 

T' 

The accuracy of the force and moment coeff ic ients  w a s  determined from 
estimated uncertainties i n  the measurements of the forces and moments, 
dynamic pressures, and base pressures. The t o t a l  uncertainties i n  the  
data are as follows: 

= 2.94 
50.002 
k .0002 
2.15 

Cm 2.002 

CY 
Cn 
Mm k.02 
a# k . l  
P 5.1 

Xp/2 k .02 
k.002 
k .002 

M, = 0.2 

k . 0006 
50.003 

A 

e 
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RESULTS AND DISCUSSION 

Results from sublimation t e s t s  indicated tha t  the bounctary-layer flow 
over the models was turbulent except for a narrow region near the wing 
leading edges and a region near the body vertex. 
are,  therefore, applicable for the case of turbulent boundary-layer flow 
on the models. 

The results presented 

Longitudinal aerodynamic characterist ics of wings W1, W2, and W 3  and 
body-wing combinations BW1, BW2, and BW3 at zero angle of s ides l ip  a re  
presented i n  figures 2, 3, and 4. 
angle of s idesl ip  and direct ional  characterist ics a t  zero angle of a t tack 
for configurations B, W2, BW2, BW2T, and BW2TN2 a re  presented i n  figures 5 
and 6. 
f o r  configurations BW2TN1, BW2TN3, and BW2TN4. 
a re  comparisons of estimated with experimental values of the  incremental 
coefficients due t o  adding ta i ls  and nacelles t o  BW2. The methods which 
were used for  the estimates are  designated at t h e  bottom of t ab le  I. 
parisons of theory with experiment are  omitted f o r  the  body-wing combina- 
t ions.  However, methods f o r  computing the aerodynamic character is t ics  of 
arrow-wing and body combinations, and comparisons of theory with experi- 
ment f o r  configurations similar t o  those of the present investigation a re  
presented i n  reference 8. 

Longitudinal character is t ics  at  zero 
1 
3 
3 
3 

Table I summarizes these experimental r e su l t s  together with r e su l t s  
Also presented i n  tab le  I 

Com- 

Wings a.nd Wing-Body Combinations 

Comparison of the  drag polars of the wings alone (f ig .  2(b)) shows 
t h a t  the  minimum drag coefficient w a s  least fo r  wing W 1 ,  the  thinnest  wing, 
and increased with am increase i n  wing thickness, camber, and t w i s t ,  as 
might be expected. 
posi t ive l i f t  coefficient decreased slightly with increase i n  thickness, 
camber, and t w i s t .  
lif't-drag r a t io s  were about 8.9 fo r  both wings W1 and W2 and 8.2 f o r  
wing W3. 
mum l i f t -drag  rat ios .  
and BW2 and 7.0 f o r  BW3. 
drag r a t i o s  quoted the models a re  at  t r i m  and about neutral ly  stable.  

However, the  drag due t o  lift, CD - Gun, a t  a given 

A s  a r e su l t  of these compensating e f fec ts ,  t he  maximum 

Addition of t he  body t o  the  wings substant ia l ly  reduced the m a x i -  

As  can be seen from figures 2 and 4, a t  the lift- 
The maxbmr~ l i f t -drag r a t io s  were about 7.3 fo r  BW1 

A study of the above resu l t s  indicates t h a t  a s l igh t  improvement i n  
maximum lift-drag r a t i o  might be realized by using a wing of the same 
thickness r a t i o  as W1 and the  same camber as W2. 
the  f a c t  tiiat the  r&xkn.m drag of W1 was less than that of W 2 ,  and the drag 
due t o  lift of W2 was l e s s  than tha t  of W1. 

T h i s  can be reasoned by 

The longitudinal character is t ics  of wing W2 a t  M, = 0.2 are  compared 
i n  figure 3 with corresponding data f o r  t h i s  wing at  & = 2.94. It i s  

a!mm!mm; 
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seen from the pitching-moment data f o r  M, = 0.2 ( f i g .  3 (c ) )  t h a t  there  
was  only moderate in s t ab i l i t y ,  at  high lift coeff ic ients ,  f o r  a moment- 
reference location corresponding t o  t h a t  required f o r  t r i m  at  
Similar results a re  shown i n  references 4 and l2 f o r  an arrow wing with 
73' swept leading edges t e s t ed  at & = 0.13 and 2.87. 
reference 12 it i s  indicated t h a t  i n s t a b i l i t y  a t  
by the  addition of wing-tip f i n s  and v i r t u a l l y  eliminated by the  use of 
large fences along the  wing upper surface. 
t h a t  similar techniques could be employed t o  improve the  s t a b i l i t y  of the  
present model (wing W2) a t  

& = 2.94. 

However, from 
I&, = 0.13 can be reduced 

It i s  reasonable t o  assume 

I& = 0.2. 

Effects of Vert ical  T a i l s  

Comparison of yawing-moment data f o r  models BW2 and BW2T ( f ig .  6) 
shows that the  wing-body combination (BW2) became direct ional ly  s table  
with the addition of t he  v e r t i c a l  t a i l s  t o  t h e  t i p s  of t he  wing. However, 
addition of t he  t a i l s  a l so  increased the  minimum drag coefficient of the  
combination by about 6 percent ( f ig .  5 (b ) ) ,  and decreased (L/D)max from 
7.3 t o  7.1 ( f ig .  > (e ) ) .  
(principally turbulent skin-friction drag) and side-force and yawing- 
moment increments a re  shown i n  t ab le  I t o  be i n  good agreement with the  
experimental values. 

Theoretical estimates of t he  ta i l -drag increment 

Effects of Nacelles 

Addition of t he  nacelles t o  BW2T decreased (L/D)max by an additional 
0.3 t o  0.6, depending on nacelle arrangement (see t ab le  I).  The highest 
(L/D)max measured f o r  a complete configuration w a s  6 .8  and w a s  obtained 
by locating the nacelles near t he  wing-body juncture with the  nacelle base 
i n  the  plane of t he  body base (BW2TN2). 
6.5, resulted when the  nacelles were located beneath t h e  body (BW2TN3). 
The effects  of t he  nacelles on the  longitudinal s t a b i l i t y  character is t ics  
were negligible (see, e.g., f i g .  5 (d) ) .  

The lowest value of (L/D)max, 

The contribution of t he  nacelles t o  the  d i rec t iona l  charac te r i s t ics  
of t he  complete configurations i s  indicated by the  incremental side-force 
and yawing-moment derivatives presented i n  t ab le  I. 
arrangement f o r  d i rec t iona l  s t a b i l i t y  was  N3,  i n  which case the  nacelles,  
si tuated below the  body, provided half  t he  yawing-moment increment needed 
by model BW2 f o r  neut ra l  d i rec t iona l  s t ab i l i t y .  A s  shown i n  t ab le  I, the  
estimated increments of side force due t o  nacelles agree closely with the  
experimental increments f o r  arrangements N1, N2, and N4; whereas, f o r  
arrangement N 3 ,  the  estimated value i s  about one-half t h e  experimental 
value. 
between experimental and estimated values. 

The most effect ive 

Comparison of yawing-moment increments shows fa i r  agreement 

A 
3 
8 
8 

~ 
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SUMMARY OF F3SULTS 

A 
3 
8 
8 

Cambered and twisted arrow wings having thickness-to-chord r a t i o s  
of 2.1, 3.2, and 4.3 percent were tes ted alone and i n  combination with 
a high-fineness-ratlo body, ve r t i ca l  t a i l s ,  and various arrangements of 
engine nacelles. The Mach number of the t e s t s  w a s  2.94, and t h e  Reynolds 
number, based on wing mean aerodynamic chord, was 3.fSXlO6. 
percent-thick wing w a s  a l so  tes ted  at  a Mach number of 0.2 and a Reynolds 
number of 6x10~. 

The 3.2- 

The most significant r e su l t s  obtained are  a s  follows: 

1. The highest maximum l i f t -drag  r a t i o  measured fo r  t he  wings alone 
at  a Mach number of 2.94 w a s  8.9. 
2.1- and 3.2-percent-thick wings. 

This value w a s  obtained for both the  

2. Addition of a high-fineness-ratio body t o  these wings resul ted 
i n  a reduction i n  maximum l i f t -drag  r a t i o  from 8.9 t o  7.3. 

3. Addition of v e r t i c a l  ta i ls  provided d i rec t iona l  s t a b i l i t y  but 
reduced the maximum l i f t -d rag  r a t i o  from 7.3 t o  7.1. 

4. The highest maldmum l i f t -drag r a t i o  obtained f o r  a combination of 
wing, body, ta i ls ,  and nacelles w a s  6.8 for the  model at trim. 

5.  A t  a Mach number of 0.2, the 3.2-percent-thick wing had only 
moderate longitudinal i n s t a b i l i t y  a t  high lift coef f ic ien ts  f o r  a moment 
reference location corresponding t o  that required f o r  trim a t  a Mach 
number of 2.94. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Feb. 25, 1960 
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